Anomalous reaction-diffusion equations for linear reactions
نویسندگان
چکیده
منابع مشابه
Anomalous diffusion with linear reaction dynamics: from continuous time random walks to fractional reaction-diffusion equations.
We have revisited the problem of anomalously diffusing species, modeled at the mesoscopic level using continuous time random walks, to include linear reaction dynamics. If a constant proportion of walkers are added or removed instantaneously at the start of each step then the long time asymptotic limit yields a fractional reaction-diffusion equation with a fractional order temporal derivative o...
متن کاملReactions-Diffusion Equations
where t ≥ 0 denotes time and x ∈ Ω ⊂ R position typical within a d−dimensional bounded domain Ω with “sufficiently smooth” boundary or Ω = R. The states u = (u1, . . . , um), i = 1, . . . , m describe the concentrations or densities of substances/populations ui = ui(t, x). The functions di(t, x) are called diffusion coefficients or diffusivities. On a bounded domain Ω the eqs. (1) have to be co...
متن کاملGeneralized reaction–diffusion equations
This Letter proposes generalized reaction–diffusion equations for treating noisy magnetic resonance images. An edge-enhancing functional is introduced for image enhancement. A number of super-diffusion operators are introduced for fast and effective smoothing. Statistical information is utilized for robust edge-stopping and diffusion-rate estimation. A quasi-interpolating wavelet algorithm is u...
متن کاملReaction-diffusion Equations
I have recently worked in the area of partial differential equations (PDE), specifically reaction-diffusion equations, drift-diffusion equations, and fluid dynamics. These equations model physical processes such as combustion, mixing, or turbulence, and my main interest has been in long term dynamics of their solutions as well as in the formation of singularities. I consider myself an applied a...
متن کاملPullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains
At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review E
سال: 2020
ISSN: 2470-0045,2470-0053
DOI: 10.1103/physreve.102.032117